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SUMMARY & CONCLUSIONS 

This study examines three different methodologies for 

producing loss-of-mission (LOM) and loss-of-crew (LOC) 

risks estimates for probabilistic risk assessments (PRA) of 

crewed spacecraft. The three bottom-up, component-based 

PRA approaches examined are a traditional static fault tree, a 

dynamic Monte Carlo simulation, and a fault tree hybrid that 

incorporates some dynamic elements. These approaches were 

used to model the reaction control system thruster pod of a 

generic crewed spacecraft and mission, and a comparative 

analysis of the methods is presented.  

The methodologies are assessed in terms of the process of 

modeling a system, the actionable information produced for 

the design team, and the overall fidelity of the quantitative risk 

evaluation generated. The system modeling process is 

compared in terms of the effort required to generate the initial 

model, update the model in response to design changes, and 

support mass-versus-risk trade studies. The results are 

compared by examining the top-level LOM/LOC estimates 

and the relative risk driver rankings at the failure mode level. 

The fidelity of each modeling methodology is discussed in 

terms of its capability to handle real-world system dynamics 

such as cold-sparing, changes in mission operations due to 

loss of redundancy, and common cause failure modes.  

The paper also discusses the applicability of each 

methodology to different phases of system development and 

shows that a single methodology may not be suitable for all of 

the many purposes of a spacecraft PRA. The fault tree hybrid 

approach is shown to be best suited to the needs of early 

assessments during conceptual design phases. As the design 

begins to mature, the level of detail represented in the risk 

model must go beyond redundancy and nominal mission 

operations to include dynamic, time- and state-dependent 

system responses as well as diverse system capabilities. This 

is best accomplished using the dynamic simulation approach, 

since these phenomena are not easily captured by static 

methods. Ultimately, once the design has been finalized and 

the goal of the PRA is to provide design validation and 

requirement verification, more traditional, static fault tree 

approaches may become as appropriate as the simulation 

method. 

1 INTRODUCTION 

Implementation of risk-informed design allows a design 

team to thoroughly explore the risks of a system while 

iterating the operations concept, design, and requirements until 

the system meets mission objectives and constraints [1]. To 

arrive at a space system design that is likely to meet all 

constraints placed upon mass, cost, performance, and risk, the 

system requirements must be understood and traded against 

each other as early as the conceptual design phase [2]. 

Depending on the project phase and the goals of the risk 

analysis, various PRA methodologies could be used to 

produce quantitative risk estimates supporting such a process.  

In order to better understand the applicability, advantages, 

and limitations of various PRA methodologies, a comparative 

analysis of three bottom-up, component-based PRA 

approaches was performed. The three approaches examined 

are a traditional static fault tree, a dynamic Monte Carlo 

simulation, and a fault tree hybrid that incorporates some 

dynamic elements. Each approach was used to assess a generic 

reaction control system (RCS) thruster pod and mission [3]. 

The methods are assessed in terms of the process of modeling 

a system, the actionable information produced for the design 

team, and the overall fidelity of the quantitative risk 

evaluation generated. The paper also discusses the 

applicability of each methodology to the different phases of 

system development. 

2 REACTION CONTROL SYSTEM DESCRIPTION 

The nominal mission under consideration is that of a 

crewed spacecraft visiting the International Space Station 

(ISS). The spacecraft is launched into orbit and then must use 

its onboard propulsion and RCS to rendezvous and dock with 

ISS 24 hours after launch. Once docked, the spacecraft 

remains on orbit for 210 days while the RCS is relatively 

quiescent. Once the spacecraft has completed its stay at ISS, 

or in the event of an abort from orbit, the spacecraft must once 

again use its propulsion and RCS to perform de-orbit, entry, 

descent, and landing operations to return the crew safely 

within 4 hours.  
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The RCS thruster pod considered consists of two groups 

of three thrusters. Loss of any two thrusters in the same group 

triggers an abort from orbit and ends the nominal mission, thus 

producing a loss of mission (LOM), and the loss of an entire 

group triggers a loss of crew (LOC). A simplified schematic of 

this system is shown in Figure 1, with thrusters represented as 

blue triangles and isolation valves represented as blue boxes. 

The nominal operation of the system calls for a “stand-by” 

thruster-firing protocol, with Thruster A to be fired until it 

experiences a failure, then Thruster B is fired until failure, and 

finally Thruster C would then be used to return the crew. 

Figure 1 – RCS Thruster Pod Configuration 

Each thruster consists of a fuel valve, an oxidizer valve, 

and an exciter. The valves failure modes are failure to open on 

demand, failure to close on demand, operational failure while 

firing, and leakage over time. The exciter can fail off when 

powered on. The failure rate data is summarized in Table 1. 

These failure rates are from tables provided in the Institute of 

Electrical and Electronics Engineers reliability data book [4]. 

 

Failure Mode Failure Rate / Probability 

Valve fails to open 2.05e-6 / demand 

Valve fails to close 1.51e-6 / demand 

Valve fails operationally 9.00e-7 / hour 

Valve fails leaky 5.00e-8 / hour 

Exciter fails off 1.69e-5 / hour 

Table 1 – Failure Rate Data 

Each fuel and oxidizer valve is backed up by an isolation 

valve, which is shared between two thrusters in different 

groups. The isolation valve is nominally open and only closes 

if one of two downstream valves has failed open or leaks. If 

the isolation valve fails to close or leaks, then a LOC is 

assumed to occur immediately. If the isolation valve 

successfully closes, then both downstream thrusters are 

deselected for the rest of the mission and the isolation valve 

must not leak in order to avoid either LOC while crewed or 

loss of vehicle (LOV) while docked to ISS.  

Table 2 summarizes the risk exposure times and demands 

by mission phase for each thruster group in the pod. It is 

important to note that only the currently selected thruster is 

demanded to fire, while all other thrusters only accrue risk of a 

valve leakage failure. This leads to uncertainty about how 

many demands and how much firing time will be accrued by 

each individual thruster in this cold-spare configuration during 

an actual mission. 

 
Failure Mode Pre-Docking Docked Post-Undock 

Valve fails to open 2,000 demands N/A 1,000 demands 

Valve fails to close 2,000 demands N/A 1,000 demands 

Valve fails operationally 2 hrs N/A 1 hr 

Valve fails leaky 24 hrs 5,040 hrs 4 hrs 

Exciter fails off 24 hrs N/A 4 hrs 

Table 2 – Risk Exposure by Mission Phase 

Table 3 gives the common cause factor (CCF) values that 

were used for the RCS thrusters. These CCFs are based upon 

the Global Alpha Modeling Tool (GAMUT) [5] developed at 

NASA Johnson Space Center. The values assume that the 

thrusters use demand-type components that undergo a 

staggered testing scheme in which they are periodically 

inspected for indications of incipient failure modes. 

 

Common Cause Group Size Common Cause Factor 

CCF of 2 out of 3 0.04830 

CCF of 3 out of 3 0.00517 

Table 3 – Common Cause Failure Conditional Probabilities 

3 METHODOLOGIES 

Despite the common set of assumptions about concept of 

operation, risk exposure, and failure rates presented here, each 

method must make additional assumptions in order to produce 

a risk estimate. As such, each methodology provides a risk 

estimate for an approximate problem. The degree of the 

approximation versus the cost of obtaining the solution, in 

terms of risk analyst effort and time, is of key interest in 

determining the value provided to the design team.  

3.1  Static Fault Tree Approach 

This approach utilized SAPHIRE 8 [6], developed at the 

Idaho National Laboratory, to construct a static fault tree of 

the RCS thruster system risks. Multiple instances of the fault 

tree were constructed to capture the various LOM and LOC 

end states, since a single model cannot capture both. Having 

multiple models of the same system can prove difficult to 

manage if the design is rapidly evolving, the turnaround time 

for performing trade studies is fast, or the inputs are in flux. 

The basic events of the fault tree were calculated off-line 

and loaded into the model. A major assumption that must be 

made is determining how many demands each thruster must 

undertake successfully. Conservatively, it could be assumed 

that each thruster in a group must fire all 3,000 demands of the 

mission. However, this excessive conservatism produces 

unrealistically high risk estimates that are not useful. For this 

assessment it has been optimistically assumed that all three 

thrusters in a group each fire an equal amount. The true 

dynamic reallocation of numbers of thruster firings, firing 

times, and leakage times cannot easily be accounted for in a 



fault tree. For example, an isolation valve should only begin to 

accrue leakage risk after a random thruster valve failure, but 

because the time of this failure is uncertain, the model must 

conservatively assume that the isolation valve must not leak 

for the entire mission duration.  

Common cause failure modes are only captured when 

they would result directly in a LOM or LOC, depending upon 

the end-state of the model. Thus, the model does not take into 

account mixed cases of both random and common cause 

failure modes combining to cause LOC.  

The fault tree approach also does not allow for an elegant 

method of accounting for time-varying abort criteria. In order 

to capture these time- and state-dependent system 

functionalities and behaviors, an intractable number of event 

trees and corresponding fault trees would need to be 

constructed. This would make the assessment prohibitively 

costly and unable to keep up with a rapidly evolving 

conceptual or preliminary design. However, using this type of 

method with a long development lead-time and conservative 

assumptions may be appropriate later in the critical design 

phase when the design has stabilized and the purpose of the 

assessment is to verify that it meets a risk requirement. 

After the model is created, it must be solved using a 

specific method in the SAPHIRE program. Both the results 

and the computation time can vary widely, depending on the 

chosen solver method and the number of cut-sets it produces. 

The cut-sets capture all of the model’s possible failure modes 

and their calculated probabilities deterministically, yielding an 

incredible amount of data that must be processed in order to 

provide actionable information to decision makers. 

Overall, this method produces a very precise solution, but 

to a very approximate problem. It is extremely useful for 

rigorously capturing all potential failure modes of a static 

approximation of the system, but suffers from a lack of 

responsiveness, which can be a detriment in assessing rapidly 

evolving designs. 

3.2 Dynamic Monte Carlo Simulation Approach 

This approach utilizes commercially available, Monte 

Carlo-style simulation software called GoldSim [7]. The 

approach uses more complex models that seek to include all 

dynamic interactions and dependencies between all 

components and failure modes.  

In addition to LOM and LOC estimates, these models are 

also able to produce estimates of LOV or crew-stranding at 

ISS, scenario-based event timing information, and data on 

successful missions or degraded vehicle states that do not 

trigger LOC, LOV, or LOM. These results can provide 

decision makers with great insight into maintenance concerns 

or the value of repair capability.  

Unlike a traditional fault tree, the dynamic approach is 

able to handle more complex, and often more representative, 

graph-like connections and dependencies that occur in many 

space systems. The Monte Carlo approach inherently allows 

dynamic reallocation of demands and changes in system 

topology that may occur after a failure. Common cause failure 

modes can be gracefully introduced into the model framework, 

enabling complete simulation of the Multiple Greek Letter 

(MGL) [8] method, which represents CCF phenomena more 

accurately than other approaches.  

Overall, this method most accurately captures the 

system’s behavior and yields the greatest design insights, but 

comes at the cost of greatly increased model complexity. This 

complexity reduces the model’s ability to rapidly respond to 

an evolving design, makes debugging and validation 

extremely challenging, and increases computational run-times 

depending on the number of realizations required to achieve 

the desired level of confidence in the risk estimate. These 

factors can make the approach too costly to effectively support 

risk-informed design in early stages of development. 

However, recent advancements in cloud computing [9] are 

reducing the time required to produce risk estimates at the 

desired confidence level and may enable these complex 

analysis techniques to become advantageous earlier in the 

design cycle. 

3.3 Rapid Fault Tree Hybrid Approach 

The hybrid approach uses the Ames Reliability Tool 

(ART), which is an Excel-based, implicit event-tree/fault-tree 

generator developed at NASA Ames Research Center based 

upon previous work [10]. The ART model deterministically 

produces estimates of LOM and LOC while capturing some 

the system’s dynamic elements that are expected to drive risk. 

The ART focuses on risk-driving cut-sets, which are expected 

to be those due to common cause failure modes and 

combinatorial mixed cases of both random failures and 

common cause failures within a specific failure mode or 

component. 

The ART model is able to capture dynamic reallocation of 

demands after a failure by using well-known “cold spare” or 

stand-by unit redundancy calculations [11]. This method also 

accounts for the dynamic change in mission duration if an 

abort is triggered, and accurately reflects the reduction in crew 

risk in the case of a degraded vehicle state. Additionally, only 

one model of the system needs to be built, as the ART is able 

to produce both LOM and LOC estimates with an extremely 

simple set of input fields. This method utilizes the built-in 

functionality of the ART to rapidly create and update models, 

enabling the risk analyst to work in real-time with designers.  

The limitations of this method are that the ART is not 

able to handle all potential redundancy configurations and 

does not take into account cross-cutting failure modes between 

different types of components or different failure modes 

within a set of similar components. As such, this method does 

not account for cascade failure modes where a thruster failing 

open in one group propagates to deselect the corresponding 

thruster in the other group due to activation of the shared 

isolation valve. Furthermore, the ART model does not capture 

thruster loss due to combinations of failure modes, i.e., when 

one thruster fails to open while another thruster fails to close.  

Depending on the system’s risk-driving failure modes, the 

overall risk results may or may not be impacted by 

optimistically omitting these cut-sets since they contain only 

random failures, which are often lower probability than those 



containing common cause failures. Moreover, if the purpose 

of the risk assessment is to compare two competing designs, 

then it is conceivable that these failure modes will not be a 

difference that makes a difference in the design trade study.  

This method sacrifices precision in the absolute risk 

estimate in order to respond more rapidly to the needs of the 

decision makers. It captures the system’s key dynamics to 

provide accurate relative rankings of the risk drivers. It also 

allows the risk analyst to quickly produce a range of estimates 

based upon uncertain input data to determine the sensitivity of 

the estimate to the lack of design knowledge. 

4 RESULTS 

LOM and LOC results from the three modeling 

approaches are presented in Figure 2. As expected, the hybrid 

model predicts lower risk than the simulation methodology 

due to its known omission of cross-failure or cross-component 

failure modes. The hybrid model captures the majority of the 

LOM and LOC risks, which stem from CCF modes.  

Figure 2 – System-Level LOM/LOC Results by Model 

The fault tree results were calculated with both the ‘Min-

Cut’ and ‘BDD’ solvers built into the SAPHIRE program, 

which produced numerical results that differed by 2%. The 

fault tree results are lower than those of the other methods due 

to the optimistic assumption about the duty cycle for each 

thruster, which was necessitated by the inability to capture 

dynamic demand reallocation. Such an approach does not take 

into account the additional demands that other thrusters must 

undertake to make-up for those of a failed group member. 

Conversely, conservatively neglecting to include dynamic 

abort modes in the fault tree resulted in higher LOC risk. 

The dynamic approach results were obtained running 

100,000 Monte Carlo simulations over a period of 11 hours on 

a quad-core Intel i5 processor. Determining the proper number 

of realizations is important to achieving converged results at 

the desired level of confidence. Producing high-fidelity results 

that capture all possible component connectivity and dynamic 

reallocation of RCS demands would require a prohibitive 

number of realizations. However, this degree of fidelity is not 

necessary to obtain a converged estimate at the system level.  

All of the methods considered can produce a top-level 

estimate of LOM and LOC. However, both the hybrid and 

fault tree approach must make many assumptions to 

approximate the real-world system. As a result, when 

compared to the dynamic approach, the hybrid approach 

underestimates LOM and LOC by 33% and 26%, respectively, 

and the fault tree underestimates LOM and LOC by 35% and 

60%, respectively. Depending on the degree of dynamics and 

graph-like component interactions, such assumptions could 

introduce so much uncertainty into the results that they would 

provide minimal actionable information. If the omissions in 

modeling fidelity drive the system risk, then the results cannot 

be trusted on an absolute scale and relative risk results 

between competing design options cannot be utilized. 

A major benefit of the simulation method is that it also 

records the time at which failure occurs. Such information can 

be extremely useful if the consequences of failure are time- 

and state-dependent, such as during an ascent to orbit on a 

failing launch vehicle, or if increased time on orbit would 

enable additional scientific research and increased availability 

of the ISS. In particular, accounting for failure timing allows 

failures that occur while docked to ISS to be counted as LOV 

instead of LOC. The dynamic results can provide insight into 

degraded system states that do not lead to a LOM, but simply 

to a loss of redundancy and continuation of the nominal 

mission. This, in turn, can inform expected component failure 

frequencies to aid in determining repair capabilities and 

maintenance schedules. 

Point estimates of system-level risk can be useful for 

comparing two different design options or determining if a 

design meets requirements. However, during the conceptual 

and preliminary phases of system development, insights into 

the system’s current risk drivers can provide designers with 

valuable guidance and feedback on how to most effectively 

increase system reliability and safety. The LOM risk drivers at 

the thruster failure mode level are provided in Figure 3 for the 

fault tree method and in Figure 4 for the hybrid and dynamic 

methods. The fault tree model results for these cases do not 

immediately yield actionable information to design teams, as 

the LOM and LOC fault trees respectively produced 900 and 

3,956 cut-sets of exact system failure modes, precisely 

capturing data about which components failed in what mode. 

For LOM, there are only 24 unique classes of cut-sets when 

the specificity of which exact component failed is removed. 

However, it is still difficult to directly apply the results in 

Figure 4 to provide actionable information to the design team. 

Similarly, the results from the dynamic simulation method 

must also be processed. Figure 3 shows the frequency of 

failure of each component during a mission with a LOM 

outcome. Both the overall frequency of failure and frequency 

of failure leading to a LOM provide actionable information 

about what failure modes are driving the system risk. 

However, a drawback of the dynamic method is that the true 

frequencies of failure modes not observed during any of the 

simulation realizations remain somewhat uncertain. In this 



case, there were no observed failures of the isolation valves, 

even though this failure mode does show up in both the hybrid 

and fault tree results. This failure is over-represented in both 

the fault tree and hybrid models due to their conservative 

assumption that the diverse leak protection provided by the 

isolation valves must be reliable for the entire mission, since 

they are not able to capture this dynamic behavior explicitly. 

Figure 3 – LOM Results for the Fault Tree Method 

Figure 4 – LOM Results for the Dynamic and Hybrid Methods 

The hybrid model immediately provides an ordered list of 

approximate risk drivers at the failure mode level, but since 

the approach neglects to model cross-component interactions, 

it omits an absolute portion of the risk. Since these cross-

component cut-sets do not drive the system risk, however, the 

primary relative risk drivers remain the same.   

Providing risk data at the failure-mode level can yield 

much richer insights into how system safety and reliability can 

be improved most efficiently. In this case, it is clear that the 

dominant failure modes are valves failing to open or valves 

failing to close. The fault tree results do provide the 

additional, beneficial information that it is common cause 

failures of these failure modes that drive system risk. Thus, a 

designer would want to spend precious project resources, such 

as mass, to protect against these failure modes by backing up 

these functions redundantly or reducing the susceptibility of 

these components to common cause failures.  

Overall, the results are driven by common cause failures 

of the fails-to-open and fails-to-close thruster failure modes. 

As such, it is interesting to analyze the sensitivity of the 

results to changes in the common cause factors. Figure 5 

shows updated model results with the common cause factors 

reduced by approximately an order of magnitude.  

Figure 5 – System-Level LOM/LOC Results by Model with 

Reduced Common Cause Factors 

The hybrid results for LOM now only capture 25% of the 

risk estimated by the dynamic model since the system risk of 

LOM is now driven by mixed combinations of random 

component failures and failure modes rather than by common 

cause failures. However, the hybrid model does capture 89% 

of the LOC risk estimated by the dynamic model, as this risk 

is driven by common cause failure of an entire group as well 

as by common cause failure of two components and a random 

failure during the abort.  

The fault tree model captures 88% of the LOM risk 

estimated by the dynamic model, as it does not correctly 

account for the reallocation of demands to the remaining 

thrusters after a single random failure. Moreover, the fault tree 

model only captures 67% of the LOC risk estimated by the 

dynamic model, since it does not consider the common cause 

failure of two thrusters triggering an abort and abort modes are 

not considered in this approach. 

 



5 DISCUSSION 

The applicability of each methodology to the different 

phases of system development can now be discussed in light 

of the benefits and drawbacks presented here.  

The methodology selected during the conceptual design 

phase needs to respond rapidly to a changing design and 

provide accurate relative risk drivers given limited design 

detail. The methodology best suited to providing such insights 

is the rapid fault tree hybrid approach. Interestingly, many of 

the limitations associated with the hybrid approach are 

minimized early in the system development life cycle because 

the precise design details about cross-strapping and 

component connectivity are still yet to be determined. 

Moreover, the purpose of PRA during the conceptual design 

phase is to guide initial design decisions. Thus, most PRA in 

this phase will be of a relative nature and a precise, absolute 

risk estimate is not as important as the comparative differences 

between multiple, competing design options. Furthermore, at 

this phase of development, the PRA is often more concerned 

with reliability potential rather than “as-drawn” reliability. 

As the design begins to mature, more precise insights are 

required to accurately discriminate between similar trade study 

options and identify the factors that can most efficiently 

reduce overall risk. Additionally, providing accurate, absolute 

risk estimates becomes increasingly important to enable 

comparison of design options in unrelated subsystems. Design 

trade studies start to become more subtly nuanced and require 

precise representations of real-world system operation. To 

accomplish this, the level of design detail represented in the 

risk model must go beyond redundancy and nominal mission 

operations to include dynamic, time- and state-dependent 

system responses as well as diverse system capabilities. The 

dynamic simulation methodology is best suited to this phase of 

development, as many risk-driving and risk-differentiating 

phenomena are not easily captured by static methods.  

Ultimately, once the design has been finalized, more 

traditional, static fault tree approaches may become as 

appropriate as the simulation method. At this point in the 

design cycle, the goal of the PRA is often to show that the 

system meets requirements or to validate the design by 

exhaustively searching for unintended failure modes or cut-

sets that are not intuitively obvious but are easily revealed 

through a fault tree. In this case, making overly conservative 

assumptions can be completely valid. Moreover, since the 

questions being asked of the PRA are much broader and less 

specific, the PRA does not have to provide decision makers 

with as much detailed insight in such a rapid fashion.  
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